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Finite-size effect on the resistive state in a mesoscopic type-II superconducting stripe
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Within the time-dependent Ginzburg-Landau (TDGL) theory we studied the creation of phase-slip lines and
the interplay with a vortex lattice in a finite-length superconducting thin stripe with finite-size normal metal
leads. In zero magnetic field and with increasing transport current phase-slip lines appear across the sample
leading to distinct jumps in the current-voltage characteristics. When a magnetic field is applied, the moving
vortex lattice becomes rearranged by the external current and fast and slow moving vortex channels are
formed. Curved vortex channels are observed near the normal contacts. We found the remarkable result that at
small applied magnetic field the normal-state transition current is increased as compared to the one at zero
magnetic field. This effect is more pronounced for larger values of the y parameter in the TDGL formalism.
This unusual “field-induced” increase in the critical current is a consequence of the nonuniform distribution of

the current in the sample.

DOI: 10.1103/PhysRevB.79.174506

I. INTRODUCTION

When a thin superconducting film is placed in a perpen-
dicular magnetic field that is larger than some critical value,
Abrikosov vortices penetrate the sample and form a triangu-
lar vortex lattice in the absence of pinning. If now a transport
current is applied to the sample vortices start moving under
the action of the Lorentz force of the current. The vortex
motion leads to energy dissipation in the system and to a
finite voltage and electrical field in the superconductor. At
large vortex line velocities, the vortex motion becomes un-
stable and a nonequilibrium distribution of the quasiparticles
appear due to the slow energy relaxation, which leads to an
electronic instability and an abrupt switching into a state
with higher electrical resistivity, i.e., the voltage-current
characteristic exhibits a hysteretic jump, as predicted by
Larkin and Ovchinnikov (LO).! The induced electric field
due to vortex motion results in a decreasing size of the vor-
tex cores because quasiparticles accelerated by the electrical
field can reach energies above the superconducting energy
gap and diffuse away from the vortex core.

Electric-field-induced flux flow instabilities, intensively
studied in the past both in low-temperature’™ and
high-temperature®~'° superconductors, in general agree rea-
sonably well with the LO theory. However, in some cases,
the LO theory turns out to be insufficient to describe the
experimental results. For example, at low temperatures the
LO description breaks down, suggesting a different origin for
the flux flow instabilities.* Explanation for the flux flow in-
stabilities beyond the original or modified LO picture was
sought in dynamic vortex lattice crystallization,'! depinning
phenomena,!? appearance of hot spots,'? and recently in vor-
tex core expansion due to electron heating at low
temperatures. '

However, in the original LO theory the question about
vortex structure before and after the transition was not con-
sidered. At the end of the 1970s it was speculated that lines
with fast vortex motion [so-called phase-slip lines (PSLs)]
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should appear in the superconductor at the transition point.
Because analytical calculations are strongly restricted due to
the mathematical complexity of the problem, only a semi-
quantitative analysis was made using the assumption that
phase-slip lines already exist in the sample.'

A number of works have been published where vortex
motion was studied theoretically using a numerical simula-
tion of the extended time-dependent Ginzburg-Landau
(TDGL) equations'®! where the time 7;, of the nonequilib-
rium quasiparticle distribution function was explicitly in-
cluded. In Refs. 16 and 17 two types of vortex motion were
found: slow and fast vortex motions (the latter was named
the kinematic vortex'”). However, neither the influence of the
magnetic field nor the transition between these types of mo-
tion nor the transformation of the vortex lattice were ad-
dressed. In Ref. 18 the deformation of the vortex core due to
the finite relaxation time of the order parameter was found
and a short-range attraction between vortices was predicted.
In a recent paper'® the rearrangement of the vortex lattice
due to the above effect and the transition from the slow to the
fast vortex motion (phase-slip line) were studied for an infi-
nitely long superconducting slab placed in a parallel mag-
netic field.

In most of the experiments devoted to the study of trans-
port properties of superconducting samples, a microbridge
geometry is used in order to reduce the power dissipation in
the system. However, in the presence of an external magnetic
field the bulk superconducting leads may turn into a normal
state while the microbridge is still superconducting, which
considerably changes the experimental picture. For example,
the critical current of the superconducting nanowire can be
significantly enhanced,?® as well as the critical current for the
creation of phase-slip centers can be affected?! by the super-
conducting normal transition of the leads. Thus, in some of
the cases we have to deal with normal contacts. The presence
of normal electrodes is in general closer to the real experi-
mental situation, which may change the properties of the
whole system in comparison with the solitary mesoscopic
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FIG. 1. (Color online) A schematic view of the studied super-
conducting strip with attached normal leads. Vertical black stripes
show the position of potential contacts. Vector plot shows the dis-
tribution of the superconducting current in the sample in case of
H=0 and nonzero applied transport current. Red (larger arrows) or
blue (smaller arrows) regions correspond to high or low current.

origin due to also possible quantum interference.

In this paper we investigate nonequilibrium processes in a
superconducting stripe in the presence of a perpendicular
magnetic field and a transport current. The effect of the finite
size of the sample as well as the effect of the normal contacts
on the current-voltage (I-V) characteristics of the sample are
considered. Due to the finite length of the strip and the in-
trinsically nonuniform current distribution along the sample
(because of normal current contacts—see Fig. 1) the system
is different from the one of Ref. 19, where periodic boundary
conditions were assumed and thus an infinite long sample
was studied.

II. THEORETICAL FORMALISM

We consider a very thin (thickness d << ¢,\) superconduct-
ing strip (Iength L and width W) in the presence of a perpen-
dicular magnetic field with a transport electric current ap-
plied through the normal contacts (size a) (see Fig. 1). In the
case of thin films (with W<\2/d) the self-induced magnetic
field can be neglected (weak demagnetization effect) and the
generalized TDGL equation averaged over the sample

thickness?? can be written in the following form:?324
u_ (9 e alwlz)
— L+ L) o (voiayy+ (1
\"1+y2|¢|2(c9t T2 v v

=) (1)

This equation should be supplemented with the equation for
the electrostatic potential

A= div{Im[ " (V- iA) ]}, ()

which is nothing else than the condition for the conservation
of the total current in the wire, i.e., div j=0. Here the param-
eter y=27,A(T)/% is the product of the inelastic collision
time 7, for electron-phonon scattering, where A(T)
=4kgT.u"?/\1=T/T, is the value of the order parameter at
temperature T which follows from Gor’kov’s derivation® of
the Ginzburg-Landau equations. In Egs. (1) and (2) all the
physical quantities [order parameter ¢=|ilexp(i¢), vector
potential A, and electrostatical potential ¢] are measured in
dimensionless units: the vector potential A and the momen-
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tum of the superconducting condensate p=V ¢—A are scaled
by the unit ®y/(27&) (where ®, is the quantum of magnetic
flux), the order parameter is in units of A, and the coordi-
nates are in units of the coherence length &(7). In these units
the magnetic field is scaled by H,,=®,/2mw& and the current
density by jo=c®,/87*\2¢. Time is scaled in units of the
Ginzburg-Landau relaxation time Te=4ma,\*/c?
=2Th/wAj, the electrostatic potential (¢) is in units of ¢
=c®y/8m ENT,=h/2eTg (Where o, is the normal-state con-
ductivity). Since we are in the regime where the width of the
sample is much smaller than the effective penetration depth
W<\?/d we neglected the effect of the current-induced
magnetic field and put A=(0,Hx,0) in Egs. (1) and (2). The
parameter u is equal to 5.79 in accordance with Ref. 23. In
our calculations we varied the other parameter y from 0O to
20, which is proportional to the quasiparticle diffusion length
Mo

QSuperconductor—vacuum boundary conditions (V—iA)/|,
=0, Ve|,=0 at the boundaries of the sample and the normal
metal-superconductor boundary conditions =0 and Ve|,=
—j at the contacts between the superconducting film with the
normal leads are implemented in our simulations. To solve
the system of Egs. (1) and (2) we apply s finite-difference
representation for the order parameter and vector potential on
a uniform Cartesian space grid and use the link variable
approach?® and standard iterative methods to find . The
electrostatic potential is obtained with the Fourier technique.
When calculating the I-V characteristics, we measured the
voltage inside the superconducting sample [a distance &
away from the superconducting/normal (S/N) interface] as
indicated in Fig. 1. In this way the contact resistance from
the S/N interface is not taken into account and our results
correspond to a four-probe measurement.

III. NUMERICAL RESULTS

Let us first study the effect of the dimensions of the
sample on the formation of the resistive state. Figure 2 shows
the current-voltage (I-V) characteristics of a superconducting
stripe for y=20 and for different values of the magnetic field.
For zero magnetic field, a first PSL enters the sample at some
critical current j., in the middle of the sample where the
superconducting current reaches its maximum [inset 1 in Fig.
2(a)]. This phase-slip line leads to a finite jump in the I-V
curve [point 1 in Fig. 2(a)]. Contrary to phase-slip centers in
one-dimensional superconductors, the oscillations of the or-
der parameter are not necessary to be uniform along PSL:
these oscillations may occur in the form of propagating
waves carrying the order parameter singularities across the
film. Such waves (named kinematic vortices) have been dis-
covered in numerical simulations using the two-dimensional
(2D) TDGL equations.!” It was shown that!® this phase-slip
line, taken at an instantaneous time, consists of a line of
counter propagating vortices and antivortices which are cre-
ated on the opposite edge of the sample. These vortices and
antivortices meet each other in the center of the sample
where they annihilate. Averaged over time, this line of vor-
tices appear as a phase-slip line. The critical current j., for
the first phase-slip line is independent of the dimensions of
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FIG. 2. (Color online) The I-V characteristics of a superconducting strip obtained in the current increasing regime at the magnetic fields:
H=0 (solid curve), H=0.2H,, (dashed curve), H=0.4H, (dotted curve), and H=0.6H,, (dashed-dotted curve). The thin line in (a) indicates
the I-V curve of the sample in the normal state. The width of the sample is [(a) and (b)] W=10¢ and [(c) and (d)] W=20¢, the length is [(a)
and (c)] L=20¢ and [(b) and (d)] L=40¢, and the size of the normal contact is a=4¢ and 5=5&. The insets show contour plots of the
Cooper-pair density at a given time for the current values indicated in the main panel [red (dark gray) or light yellow (light gray) corresponds
to high or zero Cooper-pair density]. Lower inset in (d) shows the lower part of the I-V curve of the main panel.

the sample for the given y and equals to j.,/(j,W)=0.38.
After the appearance of the first phase-slip line the supercon-
ducting current in its neighborhood is strongly suppressed
over a distance of about the penetration depth A, of the
normal current (electric field) in the superconductor. As a
result one needs a larger current to reach the condition for
the nucleation of the next phase-slip line in the strip. In gen-
eral, the possible number of active PSLs is equal to the num-
ber of voltage steps in the corresponding I-V curve. Due to
the symmetry of the sample more than one PSLs can pen-
etrate the sample at the same time and tend to avoid those
already in place [inset 2 in Fig. 2(a)]. The number of those
highly dissipative domains increases with increasing the
sample dimensions [inset 1 in Fig. 2(b)]. Because of the
close proximity of the normal contacts superconductivity is
locally suppressed [inset 1 in Fig. 2(c)] and phase-slip lines
can also be distorted [inset 1 in Fig. 2(c)]. With further in-
creasing the applied current the system transits to a highly
dissipative state with a normal path between the contacts
[inset 3 in Fig. 2(a)]. However, the resistance of this state can
be different from the one of the normal state [thin dotted line
in Fig. 2(a)] because superconductivity is preserved at the
corners of the sample [see inset 3 of Fig. 2(a)].

When we apply a magnetic-field vortices penetrate the
sample and arrange themselves into a vortex chains in nar-
row samples [inset 2 in Fig. 2(b)] or into a triangular lattice
for larger samples [inset 1 in Fig. 2(d)]. As the applied cur-
rent increases the surface barrier for vortices to enter the
sample decreases and consequently, the number of vortices
inside the sample can increase with increasing j [compare
insets 2 and 3 in Fig. 2(b)]. At the same time vortex lattice
shifts as a whole due to the Lorentz of the current [inset 2 in
Fig. 2(d)]. With further increasing current many vortices are
set into motion and they penetrate the sample from one side
and exit from the other side of the sample [inset 3 in Fig.
2(d)]. This motion of vortices leads to a smaller voltage jump
at j=j.,(H) which is much smaller than the voltage jump at
zero magnetic field [see the lower inset in Fig. 2(d)]. At the
same time a rearrangement of the vortex lattice takes place
and vortex rows are formed [inset 4 in Fig. 2(d)]. With fur-
ther increasing current vortex channels, the phase-slip lines
appear in the sample [inset 5 in Fig. 2(b)]. The coexistence
of fast and slow moving vortices is also possible [inset 5 in
Fig. 2(d)]. This PSL is the 2D analog of the phase-slip cen-
ters in superconducting wires,?’” with the difference that here
the order parameter may vary across the 2D wire.”® The
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FIG. 3. (Color online) Superconducting normal transition cur-
rent density j 3 as a function of the applied field H/H_, for different
widths of the normal contacts a. Solid symbols represent the results
obtained for y=0 and open symbols are the results for y=20. The
size of the sample is L=40& and W=20&.

physical reason for the appearance of these vortex lines is as
follows: the moving vortices leave behind a wake of reduced
|| because of nonequilibrium effects,'®!? i.e., the conden-
sate at a particular point needs a finite time to recover to its
initial value after the passage of a vortex. This induces a
short-range vortex attraction along the wire on top of the
normal isotropic vortex-vortex repulsion, resulting into an
anisotropic effective vortex-vortex interaction. With further
increasing the current more PSLs enter the sample [inset 7 in
Figs. 2(b) and 2(d)], in some cases interpenetrating the pre-
vious ones. Therefore, the steps in the I-V curve become
smaller as compared to the zero-magnetic-field case. Before
the system transits to the normal-state individual vortex
channels start merging [inset 8 in Figs. 2(b) and 2(d)].

For longer samples we found the very interesting result
that the superconducting (resistive) to normal-state transition
critical current density j.; increases with applying weak
magnetic field [compare solid black and dashed curves in
Figs. 2(b) and 2(d)]—the system is in the phase-slip line
state for larger values of the applied current. This effect dis-
appears with further increasing the applied field. Shorter
samples sustain larger applied currents at zero magnetic field
[see Figs. 2(a) and 2(c)]. To convince us that this result is not
an accident we studied the found phenomena in more detail.
Figure 3 shows the value of the current at which point the
system is driven to the normal state, i.e., the upper critical
current density j.; as a function of the applied magnetic field.
For y=0 (dashed lines and open symbols), j 5 is a monotoni-
cally decreasing function of H for all values of a. j_; is larger
for larger size of the normal contacts a. For larger y values
(solid lines) there is a maximum in the j(H) curve. The
height of this maximum is largest for intermediate values of
a and vanishes for smaller and larger size of the normal
contacts.

It turns out that the increase in j.; with magnetic field is
caused by the nonuniform distribution of currents in the
sample due to the presence of normal contacts. To support
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FIG. 4. (Color online) The I-V curve of a superconducting stripe
(W=20¢, L=40& and y=20) for H=0 (solid curves) and H
=0.2H,, (dashed curves). The normal contacts (a=5¢) are attached
in the middle of the sample side (thin curves) and on the bottom of
the sample side (thicker curves). Insets show the Cooper-pair den-
sity plots (top figures) and vector plots of the superconducting cur-
rent (bottom figures) for j/(j,W)=0.58, when the contacts are in the
middle of the sample side (inset 1) and on the bottom of the sample
side (inset 2).

this idea we also conducted simulations for the case where
the normal contacts are shifted to the bottom of the lateral
size of the sample as illustrated in the second inset of Fig. 4
(bb sample). Figure 4 shows the I-V curves of the bb sample
and the sample with contacts attached in the middle of lateral
size mm sample H=0 (solid curves) and H=0.2H,, (dashed
curves). As we see from this figure, j.; for both values of the
applied field is considerably increased in the bb sample,
where a strongly nonuniform distribution of the supercur-
rents is found (see the insets in Fig. 4). The latter means that
the nonuniform distribution of currents plays an important
role in the formation of a stable resistive state.

We have the following explanation for found phenomena.
It is well known (see, for example, Ref. 28) that in supercon-
ductors with a uniform distribution of the current density
over the cross section of the sample the position of the nor-
mal metal-superconductor boundary is unstable. If the cur-
rent density exceeds some critical value j. then the normal
region expands and for j<j. the superconducting region
grows.?? In the framework of Egs. (1) and (2) the critical
current j.=\y/u (for y>1)3° In our model system with
width of the current-injected contacts a <<W we have a non-
uniform distribution of the current density over the length of
the stripe even in the normal state. The current density is
maximal near the current-injected contacts and it can be
much less in the rest of the sample (if a<<W). Therefore,
when the local current density exceeds j,. the N-S boundary
moves deep into the superconductor and should stop when
the current density at the N-S boundary becomes smaller
than j.. Such a situation takes place in case of a <<W and one
may suppose that the length of the N-S boundary may in-
crease up to the width of the sample. This would mean that
the total critical current density j.; should be the same for
different widths a which is not observed. Our calculations
shows that j,; monotonically increases with increasing a (at
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FIG. 5. (Color online) [(a) and (b)] Contour plots of the Cooper-pair density and [(c) and (d)] vector plots of the superconducting current
density of the sample with L=40&, W=20¢, and a=4¢ for j/(j,W)=0.49 and for [(a) and (c)] H=0 and [(b) and (d)] H=0.2H ..

H=0) and reaches the maximal value at a=W (see Fig. 3).
Therefore the above picture of stability of N-S boundary in
case of nonuniform current density distribution is clearly an
oversimplification. Probably the nonuniformity plays an im-
portant role because we found that the length scale over
which the current density becomes uniform is equal to the
width of the stripe (if « << W). Hence the above picture works
only for L>W and for L~ W the finite length of the stripe
should be taken into account (we observed an increase in the
critical current j.; with increasing L at fixed a <W). Indeed,
for short stripes (with L~ W) the current density in the
middle of the stripe is always larger than the current density
at the boundary of the stripe of the same length but with a
=W. When a approaches W the above-mentioned character-
istic length scale gradually decreases and it goes to zero
when a=W. This can explain the results shown in Fig. 3 for
H=0.

When we apply a small magnetic field the current density
distribution is changed [see Fig. 5(c)]. Screening currents
appear, which are perpendicular to the transport current, at
the sides of the stripe where the current is injected. It leads to
a deformation of the NS boundary and of the shape of the
phase-slip lines [Figs. 5(a) and 5(b)]. In case of H>0 the
curvature of the phase-slip lines changes due to the repulsion
of the vortices, which move along the phase-slip lines.

IV. CONCLUSIONS

To conclude, using the phenomenological TDGL formal-
ism, we studied the transport properties of thin superconduct-
ing stripes with attached normal leads in the presence of a
perpendicular magnetic field. We found that at zero magnetic

field a finite resistance is induced by phase-slip lines. As the
parameter 7y increases the current range, over which such
phase-slip state is possible, increases to larger and lower cur-
rents. Consequently, the superconducting normal transition
current j. increases with increasing . But for y=0 no such
oscillatory phase-slip solution exists at zero field. When a
magnetic field is applied to the system, the number of dis-
tinct discontinuities in the I-V curve increases. This behavior
is consistent with the restabilization of a moving vortex dis-
tribution by the formation of a dynamic vortex phase with
distortion in the local flux density and vortex velocity. When
the critical velocity of vortices is reached phase-slip lines
appear across the sample. This phase-slip mechanism turns
out to be more effective in producing resistance. The /-V
curve exhibits a hysteretic behavior and the size of this hys-
teresis decreases with increasing magnetic field.

The most interesting result of our study is that for larger
values of vy the normal-state transition current j .3 is increased
in a small external magnetic field as compared to j 3 at zero
magnetic field. The reason for such magnetic-field-induced
increase in the critical current is the nonuniform distribution
of currents along the sample (due to the presence of normal
contacts), which keeps the system in a resistive state for
larger values of the applied current.
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